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The conjugate problem of natural convection of a power-law liquid in a vertical 
channel, taking account of the temperature-dependent consistency index of the 
liquid, is investigated. The internal heat sources are also taken into account. 
The influence of the parameters of the problem on the convection and heat flux 
is also discussed in detail. 

i. The general formulation of the conjugate problem of natural convection of non-Newtonian 
liquid with a rheological power law in a plane vertical channel was given in [i]. Consider the 
case where the temperature dependence of the consistency index k of the liquid is 

k(T)  =A exp (--bT/To), 

where A, b are constants. The constants of the internal heat sources q in the liquid and 
q~, q2 in the walls are also taken into account. 

For a completely developed one-dimensional process, the initial system of equations is 
written in dimensionless form as follows (the tilde is omitted; Fig. i) 

d [exp(_(zO)  dv n-~ dv ] dp 
dx dx d--~ -[- 0 -- F, ( 1 )  dy 

d20. 
- - + S = O  ( 2 )  

dx 2 

w i t h  t h e  b o u n d a r y  c o n d i t i o n s  

dx 2 + - $ 2 = 0 ,  l ~ < x G  1 +  ; 
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- - !  

The scales of distance, velocity, pressure, and temperature are, respectively: l, V= 
i 

[pg~ATln+I/Aexp(--b)]n;p=~pg~AT; AT. Here 2AT is the temperature difference between the walls; 
and 
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Fig. i. Scheme of problem. 

where C is the constant of variable separation. 

Note that the boundary conditions for the temperature may be written in a different form 
[2] 

x - -1 :  dO 1 + 0  S~ ( ~ _ ) 2  dO 1 - -0  + S~ ( + ) 2  
. . . . . .  ; x = + l :  - - - - -  ( 3 )  

dx ~ 2~ dx , ~ " 

The conjugacy parameter q = ~h/~ls characterizes the ratio of thermal conductivities and thick- 
nesses in the liquid--wall system. 

With the boundary conditions in Eq. (3), Eq. (2) for the temperature field has the solu- 
tion 

O(x) = E + 2 B x - - 3 D x  2. (4) 

S u b s t i t u t i n g  gq. (4) i n to  Eq. (1) and i n t e g r a t i n g ,  the  v e l o c i t y  d i s t r i b u t i o n  i s  ob t a ined  

v (x) = i w (t) dr. (S) 
--1 

Here 

1 

W (t) = ID1 + (F - -  E)  t - -  B t  z -+- Dt3i ', sign (D1 + (F - -  E) t - -  

- -  Bl ~ + Dt 8) exp (E + 2Bt - -  3Dt 2) ; 

E = ~ - F )  - ~- (1 + 2 , ) ;  
, T 

I \ h 
4 +  {-/-) ( $ 2 - - S  0 S 

2B = ; 3D = - - .  
4 ( 1 + , )  2 

The parameter ~ characterizes the degree of temperature dependence of k. When a = 0, the 
case considered in [I] is obtained. Note that in the expression for W(t) there are two un- 
known constants F and D~, which are determined from the conditions 

v 0 )  - -  o; (6) 

+I 

v (x) dx 
- - I  

=0. (7) 
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Fig. 2. Velocity profiles when e = 0, n = 0.6, 
D = 0.6 for B = 0 (i); 0.3 (2); 0.6 (3); dashed 
curve: velocity v I for n = I; D = 0, B = 0, v I = 
40v. 

The heat flux is now calculated 

+l 

Q = pc~ j" vTdx, 
- - l  

or in dimensionless form 

+I 

Q= f vOdx" (8) 
--1 

Substituting O from Eq. (4) into Eq. (8) and integrating by parts gives the following 
result, taking into account that v(+l) = v(-l) = 0 

+ l  + I  

O = --  B ~ xaW (x) dx + D ~ xSW (x)dx. (9) 
- - I  - - !  

2. To calculate v(x) and Q, the unknowns F and D I must be determined. From Eq. (6) 

+I 

( W (x) dx = O. (10) 
z1 

For  Eq. ( 7 ) ,  c a l c u l a t i o n  o f  t h e  d o u b l e  i n t e g r a l  i s  r e p l a c e d  by i n t e g r a t i o n  by p a r t s ,  t o  
give 

+I 

xW (x) dx = O. (11 )  
--1 

The integrals in Eqs. (i0) and (ii) are calculated approximately by the Gaussian formula 

M 

X ai W(x i ,  D1, F ) =  0; (12)  
i = I  

M 

Xa~x~W(xi, D1, F ) - O ,  (13)  
i = l  

where M, ai, x i are the number of points, the load, and the coordinate, respectively. 

N e w t o n ' s  me thod  i s  u s e d  t o  s o l v e  Eqs .  (12)  and ( 1 3 ) ,  wh ich  a r e  l i n e a r  a l g e b r a i c  e q u a t i o n s  
w i t h  two unknowns D1 and F. The i n i t i a l  v a l u e s  f o r  D1 and F a r e :  D~ = B/3 ;  F ~ = E -- 3D/5 
( a c c u r a t e  v a l u e s  when n = 1 ) .  

785 



o,2 

t I I 

0,2 0,4 o,6 s 

Fig. 3. Distribution of heat flux 
as a function of B when ~ = 0, n = 
0.6, D = 0.6. 
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Fig. 4. Velocity (a) and heat flux (b) profiles when n = 0.6, E = 0, 
D = B = 0.6: i) ~ = 0; 2) 0.3; 3) 0.6. 

3. The velocity distribution and heat flux are now analyzed in more detail. Consider 
the case when ~ = 0. 

Analysis of the expressions for the velocity and heat flux - Eqs. (5) and (9) -- and 
the conditions in Eqs. (i0) and (Ii) shows that v(x) and Q are related to the parameters S, 
Sz, $2, ~, h/s only through D and B and do not depend on E. Physically, this means that, if 
the temperature increases or decreases by the same amount, v(x) and Q are unchanged. 

If there is no heat source in the liquid, i.e., D = 0, the velocity distribution is 
symmetric with respect to the initial coordinate; v(x) is an odd function of x. The liquid 
in the channel moves in two opposite fluxes: an ascending flux at the right-hand wall (with 
higher temperature) and a descending flux at the left-hand wall. In this case, the velocity 
takes the form 

ff 1 
v (x).= 1D1 - -  Bt21 ~ sign (DI - -  Bt a) dt = 

0 

1 x 1 1 
= B - ~  f l D ~ -  t ~ l ~ s i g n ( O * - - t 2 )  d r :  B ~ v (  x, t~). 

Here V(x, n) depends only on n, and is an odd function of x. Thus, the parameters S l. $2, 
~, h/s have no influence on the velocity profile, apart from changing its scale. The convec- 
tion intensity increases with increases in B and vice versa. 

Analogously, the expression for the heat flux is 

I 

Q = B ~ ~ Q (,z), 

where Q(n) depends only on n. 

If B = 0 or (h/s 2 (S 2 --S I) = 4, the velocity distribution is symmetric with respect 
to the axis oy; v(x) is an even function of x. Then the liquid moves in three fluxes: two 
descending fluxes at the wall and an ascending flux at the center. 
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The expression for the velocity is 

i ! v (x) = . LDt "~ 4-  (F - -  E)  tL ~ sign (DI ~ -b (F - -  E) ~) dt = 

l x ] 1 _ 

D--2' t It3 -b (F - -  E)* ti" sign (t ~ § (F - -  f !  ~ t) dt = D -~ v(x, t~), 

where $(x) is an even function of x (fig. 
depend on S, $I, S 2 , 4, h/s in this case. 
with increase in S -- and vice versa. 

For the heat flux 

2). As above, the velocity distribution does not 
The convection increases with increase in D -- i.e., 

i 

Q = D l+ -~ Q (,z). 

When B ~ 0 

v ( x ) =  B-~v  * , n, x ; Q =  B I + ~ Q  * ~ , n . 

When D/B decreases (for example, on account of decrease in S or ~), the descending flux of 
liquid at the left-hand wall expands and that at the right-hand wall contracts, so that their 
sum is equal to the ascending flux in the center. When D/B decreases to a certain value, the 
liquid flux at the right-hand wall disappears and only two fluxes remain in the channel: a 
left-hand descending flux and a right-hand ascending flux (Fig. 2). This means that, when 
the heat source S and the conjugacy parameter ~ are slight, the problem reduces to the well- 
known case of natural convection in a vertical channel with constant but different temper- 
atures. 

The heat flux is shown in Fig. 3 as a function of B at fixed n, D. With increase in 
B -- i.e., decrease in @ -- the heat flux entrained by the moving liquid along the wall in- 
creases. 

4. Consider the case when a ~ O. In contrast to the case when a = O, v(x) and Q depend 
on the three parameters D, B, E here 

I ~ ) v ( x ) = e x p  ~ E v ~ B, D, o 0, 

Q - - e x p (  -~ E ' )  Q~ D, c~). 
tZ 

It is evident that E has no influence on the form of the velocity profile. 

If B = 0, the velocity distribution is symmetric with respect to oy, as in the previous 
case 

x l 

v (x) = .t" [(F - -  E)  t -~ Dr3[ ~ sign ((F - -  E)  t -b Dt~) x exp {-- ~ (E - -  3DtZ)l dt 4-  03.  
0 

In general, the appearance of an exponential term in the expressions for v(x) and Q means 
that the intensity of the convective flow and the heat flux in the channel decreases (Fig. 4), 
while v(x) is only an even function when D = 0. In addition, the velocity distribution depends 
on D and B and not on their ratio, as in the case when ~ = 0. 

For a clearer idea of the variation in velocity and heat flux, profiles of v and Q are 
plotted in Fig. 4 for fixed n, D, B, E and various e. It is evident that the influence of 
the temperature-dependent consistency index k of the liquid on the velocity and heat flux is 
significant. With increase in ~, the convection and heat flux decrease. 
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DRIFT OF A RAREFIED GAS IN A PLANAR CHANNEL UNDER THE 

ACTION OF MONOCHROMATIC RADIATION 

I. V. Chermyaninov and V. G. Chernyak UDC 533.6.022.8:535.375.5 

A theoretical study is performed of light-induced drift of a rarefied gas in a 
planar channel. The problem is solved using linearized kinetic equations for 
a two-level particle model in the "weak field" approximation. Analytical ex- 
pressions are obtained for the drift, averaged over channel section in almost 
free-molecular (Kn >> I) and viscous with slippage (Kn << i) flow regimes. Var- 
ious mechanisms for this drift are analyzed. Numerical estimates of drift velo- 
city are presented. 

The phenomenon of light-induced drift involves [i] particles absorbing radiation in the 
form of a travelling wave while located in a mixture with a buffer gas, and taking on a di- 
rected motion (drift). The drift may occur in the direction of radiation propagation or 
opposite thereto. It has been established that this drift phenomenon is realized in cases 
typical of nonlinear optics and spectroscopy problems, and is inherent to several classes 
of particles: atoms, molecules, and ions. 

The great majority of studies of light-induced drift have investigated the phenomenon 
in an infinite gas. At the same time it is clear that light-induced drift is also possible 
in the case where the role of the buffer gas is played by an interphase surface, which re- 
flects excited and unexcited particles in different manners. The factor of gas--surface 
interaction becomes one of the dominant ones in drift motion in capillary-porous media. 

In [2] gas drift was studied in a vessel, the dimensions of which were large in com- 
parison to the atomic free path length. The model used in [2] of strong collisions with a 
single Maxwell collision frequency can be considered only as a first approximation for 
description of light-induced drift. In particular, it does not consider the collision 
mechanism of light-induced drift development related to difference in the frequency of 
collisions of excited and unexcited atoms among themselves [3, 4]. Moreover, to calculate 
the velocity of light-induced slippage, [2] considered the spatially homogeneous case, al- 
though it is precisely in the Knudsen layer that the macroparameters (and thus, the distri- 
bution function) experience their greatest changes. 

In [5] light-induced drift was studied in a planar channel on the basis of specific 
model equations [6], according to which each act of interatomic collision leads to extinc- 
tion of an excitation, and the saturation parameter is independent of particle velocity in 
the resonance region. The latter is possible only in the case of detuning of the radiation 
frequency from resonance ~ and a Doppler shift kv. In [6] the accommodation mechanism of 
light-induced drift was not considered. 

In the present study light-induced drift in a plannar channel will be described by 
second order model kinetic equations, which in contrast to the strong collision model 
include as macroparameters the gas velocity and the stress tensor, as well as considering 
three types of interparticle interactions. The problem is solved by the variation method, 
which permits achievement of sufficiently precise results over the entire Knudsen number 
(Kn) range, and in addition leads to simple analytical expressions for the light-induced 
drift in the two limiting cases Kn << 1 and Kn >> i. This permits a clear analysis of the 
contribution of both the collision and the accommodation mechanisms to gas drift at various 
Kn. 
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